Función | Derivada |
---|---|
\( f(x) = x^n \) | \( f'(x) = n \cdot x^{n-1} \) |
\( f(x) = e^x \) | \( f'(x) = e^x \) |
\( f(x) = \sin(x) \) | \( f'(x) = \cos(x) \) |
\( f(x) = \cos(x) \) | \( f'(x) = -\sin(x) \) |
\( f(x) = \ln(x) \) | \( f'(x) = \frac{1}{x} \) |
\( f(x) = \tan(x) \) | \( f'(x) = \sec^2(x) \) |
\( f(x) = \arcsin(x) \) | \( f'(x) = \frac{1}{\sqrt{1-x^2}} \) |
\( f(x) = \arccos(x) \) | \( f'(x) = -\frac{1}{\sqrt{1-x^2}} \) |
\( f(x) = \arctan(x) \) | \( f'(x) = \frac{1}{1+x^2} \) |
\( f(x) = \sinh(x) \) | \( f'(x) = \cosh(x) \) |
\( f(x) = \cosh(x) \) | \( f'(x) = \sinh(x) \) |
Función | Integral |
---|---|
\( f(x) = x^n \) | \( \int f(x) \, dx = \frac{x^{n+1}}{n+1} + C \) (para \( n \neq -1 \)) |
\( f(x) = e^x \) | \( \int f(x) \, dx = e^x + C \) |
\( f(x) = \sin(x) \) | \( \int f(x) \, dx = -\cos(x) + C \) |
\( f(x) = \cos(x) \) | \( \int f(x) \, dx = \sin(x) + C \) |
\( f(x) = \frac{1}{x} \) | \( \int f(x) \, dx = \ln|x| + C \) |
\( f(x) = \tan(x) \) | \( \int f(x) \, dx = -\ln|\cos(x)| + C \) |
\( f(x) = \sec^2(x) \) | \( \int f(x) \, dx = \tan(x) + C \) |
\( f(x) = \frac{1}{1+x^2} \) | \( \int f(x) \, dx = \arctan(x) + C \) |
\( f(x) = \sinh(x) \) | \( \int f(x) \, dx = \cosh(x) + C \) |
\( f(x) = \cosh(x) \) | \( \int f(x) \, dx = \sinh(x) + C \) |
\( f(x) = a^x \) | \( \int f(x) \, dx = \frac{a^x}{\ln(a)} + C \) |